Microfluidic fabrication of perfluorohexane-shelled double emulsions for controlled loading and acoustic-triggered release of hydrophilic agents.

نویسندگان

  • Wynter J Duncanson
  • Laura R Arriaga
  • W Lloyd Ung
  • Jonathan A Kopechek
  • Tyrone M Porter
  • David A Weitz
چکیده

The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents. Using this technology, we efficiently encapsulate a model hydrophilic agent within the emulsions and study its response to ultrasound irradiation. Using a combination of optical and acoustic imaging methods, we observe payload release upon acoustic vaporization of PFH. Our work demonstrates the utility of microfluidic techniques for controllably loading hydrophilic agents into PFH-based emulsions, which have great potential for acoustically triggered release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.

Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these...

متن کامل

Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability.

We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the...

متن کامل

PTMC and MPEG-PTMC microparticles for hydrophilic drug delivery.

In this study, the potential of PTMC and mPEG-PTMC microparticles for controlled delivery of hydrophilic drugs was investigated. PTMC and mPEG-PTMC microparticles, loaded with hydrophilic model compounds (BSA, lysozyme and CoomassieR Brilliant Blue G) were prepared by the double emulsion method. High loading efficiencies can be achieved, and first order release profiles during 60 days were obse...

متن کامل

Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotr...

متن کامل

Preparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic Compound

As encapsulation of hydrophilic drugs in the solid lipid nanoparticles (SLNs) is still a challenging issue, the aim of this study was to prepare SLNs containing tramadol hydrochloride as a hydrophilic compound.The SLNs were prepared using glycerol monostearate (GMS), soy lecithin and tween 80 by double emulsification-solvent evaporation technique. The nanoparticles were optimized through a cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 46  شماره 

صفحات  -

تاریخ انتشار 2014